You should be successful on Exam II, if you can do the following in addition to the skills from CHEM 101 and Exam I:

KINETICS - Unit 15, Sections 1-6

- 1. Give the rate of reaction in terms of reactant and product concentration variations
- 2. Calculate aver. rate, given $[]_i$, $[]_f$, t_f , and t_i
- 3. Calculate instantaneous rate from a graph of [] vs. time
- 4. Explain the factors that affect rxn rates.
- 5. Explain the meaning of "rate constant" & state the units
- 6. Determine the rate law and overall order from experimental results (vv)
- 7. Calculate rate, rate constant, or reactant conc. given rate law + 2 of these
- 8. Calculate [A], [A]_o, k, or t given 3 of 4
- 9. Explain & calculate relationship between $t_{1/2}$ & k for zero, 1st, and 2nd order rxn
- 10. Use graphing to determine zero, 1st, or 2nd order
- 11. Find Ea, ΔE from energy profile & define each
- 12. Use collision theory to explain temperature & concentration dependence
- 13. Describe the effects of a catalyst on energy requirements
- 14. Use the Arrhenius equation to relate activation energy to changing temp. & rate constants
- 15. ID elementary step, overall rxn, and rate determining step
- 16. Derive Rate law given elementary steps & their speeds or overall rxn
- 17. ID a catalyst and an intermediate in a mechanism

EQUILIBRIUM – Unit 16, Sections 1-4

- 1. Describe chemical equilibrium
- 2. Describe & Write the equilibrium constant expression for a balanced equation.
- 3. Calculate K using equilibrium concentrations or pressures (vv)
- 4. Convert between Kp and Kc
- 5. Find the equilibrium constant for 1 equation by comparing it to another equation
- 6. Calculate K given inital concentration and 1 equilibrium concentration
- 7. Determine if an equilibrium has been reached, conditions at equilibrium, or the direction of the equation.
- 8. Calculate Q and compare it to a given K to determine the direction of the equil.
- 9. Use K and initial concentrations to find the equilibrium concentrations
- 10. Explain and Calculate how changes in conc, temp, & pressure effect equilibrium
- 11. Calculate K from ΔG Unit 20.3c and 20.3d